

ECE 344

MICROWAVE FUNDAMENTALS PART1-Lecture 2

Dr. Gehan Sami

Transmission-Line Theory

- Lumped circuits: resistors, capacitors, inductors

4 electrical wavelength is much larger than the physical dimension of the circuits neglect time delays (phase)

- Distributed circuit elements: transmission lines
 account for propagation and time delays (phase change)

We need transmission-line theory whenever the length of a line is significant compared with a wavelength.

Transmission Line

An engineering problem is to transfer signal from generator to load.
A transmission line is a part of circuit that link between generator and load; Theory of transmission line applied on all types of transmission lines.

2 conductors

4 per-unit-length parameters:
$C=$ capacitance/length $[\mathrm{F} / \mathrm{m}]$
$L=$ inductance/length $[\mathrm{H} / \mathrm{m}$]
$R=$ resistance/length [Ω / m]

$G=$ conductance/length [J / m or S / m]

Coaxial Cable

Characteristic impedance depend on dimension and dielectric material

$$
\begin{aligned}
& C=\frac{2 \pi \varepsilon_{0} \varepsilon_{r}}{\ln \left(\frac{b}{a}\right)} \quad[\mathrm{F} / \mathrm{m}] \\
& L=\frac{\mu_{0} \mu_{r}}{2 \pi} \ln \left(\frac{b}{a}\right)[\mathrm{H} / \mathrm{m}]
\end{aligned}
$$

$$
L C=\mu \varepsilon=\mu_{0} \varepsilon_{0}\left(\mu_{r} \varepsilon_{r}\right)
$$

For lossless TL

$$
z_{0}=\sqrt{\frac{L}{c}}=\sqrt{\frac{\mu}{\varepsilon}} \frac{1}{2 \pi} \ln \left(\frac{b}{a}\right)[\Omega]
$$

$$
\begin{aligned}
G=\frac{2 \pi \sigma}{\ln \left(\frac{b}{a}\right)}[\mathrm{S} / \mathrm{m}] & R
\end{aligned}=R_{s}\left(\frac{1}{2 \pi a}+\frac{1}{2 \pi b}\right)
$$

Transmission Line (cont.)

Transmission Line (cont.)

$$
\begin{aligned}
& V(z)-V(z+\Delta z)=I(z)(R \Delta z+j w L \Delta z) \\
& I(z)-I(z+\Delta z)=V(z+\Delta z)(G \Delta z+j w C \Delta z)
\end{aligned}
$$

$$
\begin{aligned}
& \text { let } \Delta z \rightarrow 0: \\
& \frac{d V(z)}{d z}=-(R+j w L) I(z) \\
& \frac{d I(z)}{d z}=-(G+j w C) V(z)
\end{aligned}
$$

"Telegrapher'sE quations"

TEM Transmission Line (cont.)

Wave Propagation on a Transmission Line

$$
\begin{aligned}
& \frac{d^{2} V(z)}{d z^{2}}=-(R+j \omega L) \frac{d I(z)}{d z}=(R+j \omega L)(G+j \omega C) V(z) \\
& \frac{d^{2} I(z)}{d z^{2}}=-(G+j \omega C) \frac{d V(z)}{d z}=(R+j \omega L)(G+j \omega C) I(z) \\
& \frac{d^{2} V(z)}{d z^{2}}-\gamma^{2} V(z)=0 \\
& \frac{d^{2} I(z)}{d z^{2}}-\gamma^{2} I(z)=0
\end{aligned}
$$

$$
\gamma=[(R+j \omega L)(G+j \omega C)]^{1 / 2}=\alpha+j \beta
$$

$\gamma=$ propagation constant
$\alpha=$ attenuation constant
$\beta=$ phase constant

TEM Transmission Line (cont.)

Wave Propagation on a Transmission Line

$$
\begin{aligned}
& \frac{d^{2} V(z)}{d z^{2}}-\gamma^{2} V(z)=0 \\
& \frac{d^{2} I(z)}{d z^{2}}-\gamma^{2} I(z)=0
\end{aligned}
$$

Solution:

$$
V(z)=A e^{-\gamma z}+B e^{+\gamma z}
$$

$$
\begin{aligned}
& \begin{array}{l}
V(z)=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{+\gamma z} \\
\\
=\left|V_{0}^{+}\right| e^{j \phi^{+}} e^{-\alpha z} e^{-j \beta z}+\left|V_{0}^{-}\right| e^{j \phi^{-}} e^{+\alpha z} e^{+j \beta z} \\
=\left|V_{0}^{+}\right| e^{-\alpha z} \cos \left(\omega t-\beta z+\phi^{+}\right)+\left|V_{0}^{-}\right| e^{+\alpha z} \cos \left(\omega t+\beta z+\phi^{-}\right) \\
I(z)=C e^{-\gamma z}+D e^{+\gamma z}
\end{array} \quad \text { Reflected wave in -ve } z \text { direction }
\end{aligned}
$$

TEM Transmission Line (cont.)

Forward travelling wave (a wave traveling in the positive z direction):

$$
V^{+}(z)=V_{0}^{+} e^{-\gamma z}=V_{0}^{+} e^{-\alpha z} e^{-j \beta z}
$$

$$
\begin{aligned}
v^{+}(z, t) & =\operatorname{Re}\left\{\left(V_{0}^{+} e^{-\alpha z} e^{-j \beta z}\right) e^{j \omega t}\right\} \\
& =\operatorname{Re}\left\{\left(\left|V_{0}^{+}\right| e^{j \phi} e^{-\alpha z} e^{-j \beta z}\right) e^{j \omega t}\right\} \\
& =\left|V_{0}^{+}\right| e^{-\alpha z} \cos (\omega t-\beta z+\phi)
\end{aligned}
$$

$$
\beta=\frac{2 \pi}{\lambda_{g}}
$$

$t=0$

Phase Velocity

Track the velocity of a fixed point on the wave (a point of constant phase), e.g., the crest.

Set $\quad \omega t-\beta z=\mathrm{constant}$

$$
\begin{aligned}
& \omega t_{1}-\beta z_{1}=\omega t_{2}-\beta z_{2} \\
& \frac{d z}{d t}=\frac{\omega}{\beta} \\
& v_{p}=\frac{\omega}{\beta}
\end{aligned}
$$

In expanded form:

$$
v_{p}=\frac{\omega}{\operatorname{Im}\left\{[(R+j \omega L)(G+j \omega C)]^{1 / 2}\right\}}
$$

Characteristic Impedance Z_{0}

A wave is traveling in the positive z direction.

$$
Z_{0} \equiv \frac{V^{+}(z)}{I^{+}(z)}
$$

$$
\begin{array}{rlrl}
V^{+}(z) & =V_{0}^{+} e^{-\gamma z} & \text { so } & Z_{0}=\frac{V_{0}^{+}}{I_{0}^{+}} \\
I^{+}(z) & =I_{0}^{+} e^{-\gamma z} &
\end{array}
$$

Characteristic Impedance Z_{0} (cont.)

$$
V(z)=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{+\gamma z}
$$

Use Telegrapher's Equation: $\quad \frac{d V(z)}{d z}=-(R+j w L) I(z)$

Hence

$$
-\gamma V_{0}^{+} e^{-\gamma z}=-(R+j w L) I_{0}^{+} e^{-\gamma z}
$$

$$
Z_{o}=\frac{V^{+}(z)}{I^{+}(z)}=\frac{(R+j \omega L)}{\sqrt{(R+j \omega L)(G+j \omega C)}}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}
$$

Characteristic impedance of transmission line:

- a fundamental parameter of transmission line is its characteristic impedance z_{0} and propagation constant γ.
- z_{0} describe the relation between the current and voltage travelling waves
- z_{0} is function of dimensions of T.L. and dielectric constant
- for most RF systems z_{0} is either 50 or 75 ohms.(Notice z_{0} is real for low losses)

For low power (cable TV for example) coaxial lines are optimized for low loss $\mathbf{z}_{\mathbf{0}}=\mathbf{7 5}$ ohms, for radar applications high power is encountered coaxial line is designed to compromise Between max power handling and minim um losses ,it designed to have $\mathbf{z}_{\mathbf{0}} \mathbf{= 5 0} \mathbf{~ o h m}$

APPENDIX J standard coaxial cable data

appendix \mathbf{J} for standard coaxial cable, most designed for z_{0} between 50-75

RG/U type	Impedance (Ω)	Inner cond. diam. (In.)	Dielectric material	D di
RG-8A/U	52	0.0855	P	
RG-9B/U	50	0.0855	P	
RG-55B/U	54	0.0320	P	
RG-58B/U	54	0.0320	P	
RG-59B/U	75	0.0230	P	
RG-141A/U	50	0.0390	T	
RG-142A/U	50	0.0390	T	
RG-174/U	50	0.0189	P	
RG-178B/U	50	0.0120	T	
RG-179B/U	75	0.0120	T	
RG-180B/U	95	0.0120	T	
RG-187/U	75	0.0120	T	
RG-188/U	50	0.0201	T	
RG-195/U	95	0.0120	T	
RG-213/U	50	0.0888	P	
RG-214/U	50	0.0888	P	
RG-223/U	50	0.0350	P	
RG-316/U	50	0.0201	T	
RG-401/U	50	0.0645	T	
RG-402/U	50	0.0360	T	
RG-405/U	50	0.0201	T	

Backward-Traveling Wave

\cdots
$V^{-}(z)$

A wave is traveling in the negative z direction.

$$
\frac{V^{-}(z)}{-I^{-}(z)}=Z_{0} \quad \text { so } \quad \frac{V^{-}(z)}{I^{-}(z)}=-Z_{0}
$$

General Case

Most general case:

A general superposition of forward and backward traveling waves:

$$
\begin{aligned}
V(z) & =V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{+\gamma z} \\
I(z) & =\frac{1}{Z_{0}}\left[V_{0}^{+} e^{-\gamma z}-V_{0}^{-} e^{+\gamma z}\right]
\end{aligned}
$$

Note: The reference directions for voltage and current are the same for forward and backward waves.

Summary of Basic TL formulas

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{+\gamma z} \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-\gamma z}-\frac{V_{0}^{-}}{Z_{0}} e^{+\gamma z} \\
& \gamma=\alpha+j \beta=[(R+j \omega L)(G+j \omega C)]^{\frac{1}{2}} \\
& Z_{0}=\left(\frac{R+j \omega L}{G+j \omega C}\right)^{\frac{1}{2}}
\end{aligned}
$$

guided wavelength $\equiv \lambda_{g}$

$$
\lambda_{g}=\frac{2 \pi}{\beta}[\mathrm{~m}]
$$

phase velocity $\equiv v_{p}$

$$
v_{p}=\frac{\omega}{\beta}[\mathrm{m} / \mathrm{s}]
$$

Lossless Case

$$
\begin{gathered}
R=0, G=0 \\
\gamma=\alpha+j \beta=[(R+/ \omega L)(G+j \omega \phi)]^{1 / 2} \\
=j \omega \sqrt{L C}
\end{gathered}
$$

$$
\begin{array}{ll}
\text { so } \quad & \alpha=0 \\
\beta=\omega \sqrt{L C}
\end{array}
$$

$$
Z_{0}=\left(\frac{R+j \omega L}{G+j \omega C}\right)^{1 / 2}
$$

$$
\begin{gathered}
v_{p}=\frac{\omega}{\beta} \\
\square
\end{gathered}
$$

$$
\Rightarrow \quad Z_{0}=\sqrt{\frac{L}{C}}
$$

$$
v_{p}=\frac{1}{\sqrt{L C}}
$$

Lossless Case (cont.)

$$
v_{p}=\frac{1}{\sqrt{L C}}
$$

In the medium between the two conductors is homogeneous (uniform) and is characterized by (ε, μ), then we have that

$$
L C=\mu \varepsilon
$$

The speed of light in a dielectric medium is $\quad c_{d}=\frac{1}{\sqrt{\mu \varepsilon}}$

Hence, we have that

$$
v_{p}=c_{d}
$$

The phase velocity does not depend on the frequency, and it is always the speed of light (in the material).

